Machine Learning Summer School
on applications in Science

26 June - 2 July / Kraków, Poland

/ About

was a summer school providing a didactic introduction to a range of modern topics in Machine Learning and their applications in other disciplines of Science, primarily intended for research-oriented graduate students. Our goal was to provide a unique opportunity to learn from and connect with the leading experts in the scenic setting of the historic city of Kraków, Poland. The school featured a line-up of internationally recognized researchers who talked with enthusiasm about their subjects and was attended on-site by over 100 participants from 40 countries. This school was the next edtion of .

/ Speakers

Thea Klæboe Årrestad

Thea Klæboe Årrestad

ETH Zürich / CERN

Matej Balog

Matej Balog

DeepMind

Michael Bronstein

Michael Bronstein

University of Oxford

Bingqing Cheng

Bingqing Cheng

Institute of Science and Technology, Austria

Sayak Ray Chowdhury

Sayak Ray Chowdhury

Microsoft Research

Marco Cuturi

Marco Cuturi

Apple / CREST-ENSAE

Yarin Gal

Yarin Gal

University of Oxford

Anna Gambin

Anna Gambin

University of Warsaw

Jose Miguel Hernandez-Lobato

Jose Miguel Hernandez-Lobato

University of Cambridge

Stanisław Jastrzębski

Stanisław Jastrzębski

Molecule.one

Krzysztof Krawiec

Krzysztof Krawiec

Poznan University of Technology

Mario Krenn

Mario Krenn

Max Planck Institute for the Science of Light

Krzysztof Maziarz

Krzysztof Maziarz

Microsoft Research

Mathias Niepert

Mathias Niepert

University of Stuttgart

Benedek Rozemberczki

Benedek Rozemberczki

Isomorphic Labs

Przemysław Spurek

Przemysław Spurek

Jagiellonian University

Żaneta Świderska-Chadaj

Żaneta Świderska-Chadaj

Warsaw University of Technology / Bayer

Christoph Weniger

Christoph Weniger

University of Amsterdam

Bartosz Zieliński

Bartosz Zieliński

Jagiellonian University / IDEAS NCBR

/ Agenda & recordings

Most of the lectures can be watched on our YouTube channel.
Links to the specific lectures can be found in the agenda below.

Monday / 26 June

8:00 - 8:30
Registration
8:30 - 9:00
Introduction
9:00 - 10:30 ( video)
Christoph Weniger
Simulation-based inference for large forward models in physics and astronomy
10:30 - 11:00
Coffee break
11:00 - 12:30 ( video)
Christoph Weniger
Simulation-based inference for large forward models in physics and astronomy
12:30 - 13:30
Lunch break
13:30 - 15:00 ( video)
Bingqing Cheng
Predicting materials properties with the help of machine learning
15:00 - 15:30
Coffee break
15:30 - 17:30 ( video)
Matej Balog
Algorithm discovery using reinforcement learning
17:30+
Free time / break
18:00+
Party 1

Tuesday / 27 June

8:45 - 9:00
Registration
9:00 - 10:30 ( video)
Marco Cuturi
A primer on Optimal Transport Theory and Algorithms, with Applications to Single-Cell Omics
10:30 - 11:00
Coffee break
11:00 - 12:30 ( video)
Marco Cuturi
A primer on Optimal Transport Theory and Algorithms, with Applications to Single-Cell Omics
12:30 - 13:30
Lunch break
13:30 - 15:00 ( video)
Benedek Rozemberczki
Deep Learning for Drug Pair Scoring
15:00 - 15:30
Coffee break
15:30 - 17:00 ( video)
Thea Aarrestad
Unlocking the Secrets of the Universe: Accelerating Discovery with Machine Learning at CERN
17:00+
Poster session

Wednesday / 28 June

8:45 - 9:00
Registration
9:00 - 10:30 ( video)
Ania Gambin
Bayesian models, Bayesian networks, and Bayesian neural networks with applications in computational biology
10:30 - 11:00
Coffee break
11:00 - 12:30 ( video)
Yarin Gal
Uncertainty in Deep Learning
12:30 - 13:30
Lunch break
13:30 - 15:00 ( video)
Krzysztof Maziarz
Reaction Prediction and Retrosynthesis
15:00 - 15:30
Coffee break
15:30 - 17:00 ( video)
Sayak Ray Chowdhury
Differential Privacy in Reinforcement Learning
17:15 - 18:15
Research projects at Jagiellonian University
18:15+
Free time

Thursday / 29 June

8:45 - 9:00
Registration
9:00 - 10:30 ( video)
Stanisław Jastrzębski
Nothing Makes Sense in Deep Learning Except in the Light of the Simplicity Bias
10:30 - 11:00
Coffee break
11:00 - 12:30 ( video)
Przemysław Spurek
Hypernetwork approach to generating 3D objects
12:30 - 13:30
Lunch
13:30+
Free time

Friday / 30 June

8:45 - 9:00
Registration
9:00 - 10:30 ( video)
Jose Miguel Hernandez-Lobato
Machine Learning for Molecules
10:30 - 11:00
Coffee break
11:00 - 12:30 ( video)
Jose Miguel Hernandez-Lobato
Machine Learning for Molecules
12:30 - 13:30
Lunch break
13:30 - 15:00 ( video)
Mario Krenn
Towards an Artificial Muse for new Ideas in Physics
15:00 - 15:30
Coffee break
15:30 - 17:00 ( video)
Mario Krenn
Towards an Artificial Muse for new Ideas in Physics
17:00+
Free time / break
18:00+
Party 2

Saturday / 1 July

10:15 - 10:30
Registration
10:30 - 11:00
Coffee break
11:00 - 12:30
Żaneta Swiderska-Chadaj
Machine Learning in medical image analysis - challenges and opportunities
12:30 - 13:30
Lunch break
13:30 - 15:00 ( video)
Michael Bronstein
Geometric deep learning
15:00 - 15:30
Coffee break
15:30 - 17:00 ( video)
Michael Bronstein
Geometric deep learning
17:00+
Free time

Sunday / 2 July

8:45 - 9:00
Registration
9:00 - 10:30 ( video)
Krzysztof Krawiec
Machine Learning meets Program Synthesis
10:30 - 11:00
Coffee break
11:00 - 12:30 ( video)
Bartosz Zieliński
Interpretable Deep Learning with Prototypical Parts
12:30 - 13:00
Closing remarks
13:00 - 14:00
Lunch

/ Timeline

6 March

Registration open (details here)

11 April

Registration closes

28 April

Acceptance notifications

28 April - 16 May

Time to pay the registration fee

16 May

Confirmation of participation

26 June - 2 July

/ Venue

Jagiellonian University
Faculty of Mathematics and Information Technologies

Address:
Profesora Stanisława Łojasiewicza 6,
30-348 Kraków

/ Organizers

Tomasz Trzciński

IDEAS NCBR / Jagiellonian University

Adam Pardyl

IDEAS NCBR / Jagiellonian University

Marcin Przewięźlikowski

IDEAS NCBR / Jagiellonian University

Filip Szatkowski

IDEAS NCBR / ML in PL / Warsaw University of Technology

Sylwia Piskorska

IDEAS NCBR

Karolina Matusiak

IDEAS NCBR

Monika Staniszewska

IDEAS NCBR

Adam Goliński

ML in PL / Apple

Maciej Chrabąszcz

ML in PL / Warsaw University of Technology

Maja Jabłońska

ML in PL

Marek Wydmuch

ML in PL / Poznan University of Technology

Franek Budrowski

ML in PL / G-Research

Marek Masiak

ML in PL / University College London

Michał Tyrolski

ML in PL / Deepflare

Sebastian Dziadzio

ML in PL / University of Tübingen

Andrzej Krupka

ML in PL / University of Warsaw

Magdalena Cebula

ML in PL / Orange

Alicja Ziarko

ML in PL / University of Warsaw

Dawid Mączka
Dawid Mączka

ML in PL / University of Warsaw

Jakub Walendowski

ML in PL / University of Warsaw

Aleksandra Możwiłło

ML in PL

Jakub Myśliwiec

ML in PL / Utrecht University

Kamil Bladoszewski

ML in PL / Amazon Web Services (AWS)

Bartek Krzepkowski
Bartek Krzepkowski

IDEAS NCBR / ML in PL

Mateusz Pyla

IDEAS NCBR / Jagiellonian University

Marcin Możejko

ML in PL / University of Warsaw

/ Volunteers

Anna Bielawska

Bartłomiej Cupiał

Artur Kasymov

Patryk Krukowski
Patryk Krukowski

Michał Krutul

Marcin Sendera

Bartosz Wójcik
Bartosz Wójcik

Michał Zając

/ Project

The project, whose goal is to internationalize the Jagiellonian University of Kraków in the fields of machine learning and neurobiology through the implementation of a series of summer schools, is carried out under the SPINAKER program financed by the National Agency for Academic Exchange (NAWA).

Projekt, którego celem jest umiędzynarodowienie Uniwersytetu Jagiellońskiego w obszarach uczenia maszynowego oraz neurobiologii poprzez realizację cyklu intensywnych warsztatów w ramach szkół letnich, realizowany jest w ramach programu SPINAKER finansowanego przez Narodową Agencję Wymiany Akademickiej (NAWA).

Zapytania ofertowe dla firm: zapytania ofertowe